6 Commits

20 changed files with 6986 additions and 125 deletions

View File

@ -370,9 +370,9 @@
"meta": {
"version": 1
},
"net_format_name": "",
"net_format_name": "Spice Model",
"page_layout_descr_file": "",
"plot_directory": "",
"plot_directory": "/home/tgohle/Desktop/git/ToGo-Lab/0004-DenshaBekutoru/KiCad/0004-DenshaBekutoru/",
"spice_current_sheet_as_root": false,
"spice_external_command": "spice \"%I\"",
"spice_model_current_sheet_as_root": true,

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -0,0 +1,39 @@
*
.subckt 0004-DenshaBekutoru
.model __D2 D
.model __D1 D
R3 Net-_D10-A_ VCC 220
D10 __D10
C5 VCC GND 100n
U4 __U4
C4 VCC GND 4.7u
U3 __U3
R4 Net-_D11-A_ VCC 220
D11 __D11
R5 Net-_U3-_RESET/PB5_ VCC 10k
R6 Net-_D4-A_ Net-_D6-K_ 220
D6 __D6
D5 __D5
R7 Net-_D6-A_ Net-_D4-K_ 220
D4 __D4
C3 Net-_D3-K_ GND 100n
U1 __U1
C2 Net-_D3-K_ GND 47u
D3 __D3
U2 __U2
D2 Net-_D2-A_ Net-_D2-K_ __D2
C1 Net-_U3-_RESET/PB5_ GND 100n
SW1 __SW1
R8 Net-_D8-A_ Net-_D5-K_ 220
D7 __D7
D8 __D8
D9 __D9
R1 Net-_D2-A_ Net-_D1-K_ 1.8k
R2 Net-_D1-A_ Net-_D2-K_ 1.8k
D1 Net-_D1-A_ Net-_D1-K_ __D1
J1 __J1
.ends

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 162 KiB

View File

@ -0,0 +1,217 @@
/*
0004_DenshaBekutoru Optocoupler Averaging Test
Target dev board (later): Arduino Pro Mini 5V / 16 MHz (ATmega328P)
Measures average voltage on:
- A2 -> later ATtiny85 PB3 (XTAL1, Pin 2)
- A3 -> later ATtiny85 PB4 (XTAL2, Pin 3)
Boot calibration:
- assumes "no movement" at startup
- measures V1/V2 AverageRepeat times
- computes di = |V1 - V2| each time
- VdiffBaseline = median(di)
- VdiffThreshold = max(VdiffBaseline * VdiffThresholdMargin, VdiffThresholdMinVolts)
*/
const unsigned long SAMPLE_WINDOW_MS = 100; // averaging window per measurement
const unsigned long SAMPLE_DELAY_US = 500; // delay between ADC samples (~2 kHz)
const uint8_t ADC_PIN_1 = A2; // Pro Mini A2 -> later ATtiny85 PB3 (XTAL1, Pin 2)
const uint8_t ADC_PIN_2 = A3; // Pro Mini A3 -> later ATtiny85 PB4 (XTAL2, Pin 3)
// LEDs for direction indication (avoid D0/D1)
const uint8_t LED_DIR1_PIN = 2; // D2
const uint8_t LED_DIR2_PIN = 3; // D3
// Serial output control (0 = no output, 1 = output)
bool SerialOutputAllow = true;
// ---- Calibration parameters ----
const uint16_t AverageRepeat = 100; // number of init measurements
const float VdiffThresholdMargin = 1.50f; // multiplier (e.g., 1.5 = +50% margin)
const float VdiffThresholdMinVolts = 0.03f; // floor in volts (optional but practical)
// Globals: latest measured averaged voltages
float v1 = 0.0f;
float v2 = 0.0f;
// Calibration globals
float VdiffBaseline = 0.0f; // median(|V1-V2|) measured at boot (no movement)
float VdiffThreshold = 0.0f; // final threshold used for direction decision
// Direction encoding requirement:
// 0 = no direction
// 2 = direction 1 (maps to LED pin D2)
// 3 = direction 2 (maps to LED pin D3)
byte direction = 0;
static inline float absf(float x) { return (x >= 0.0f) ? x : -x; }
static inline float maxf(float a, float b) { return (a > b) ? a : b; }
static void applyDirectionOutputs()
{
digitalWrite(LED_DIR1_PIN, LOW);
digitalWrite(LED_DIR2_PIN, LOW);
if (direction == LED_DIR1_PIN) {
digitalWrite(LED_DIR1_PIN, HIGH);
} else if (direction == LED_DIR2_PIN) {
digitalWrite(LED_DIR2_PIN, HIGH);
}
}
// Measure averaged voltages (updates globals v1/v2)
static void measureAveragedVoltages()
{
unsigned long startTime = millis();
unsigned long sum1 = 0;
unsigned long sum2 = 0;
unsigned long samples = 0;
while (millis() - startTime < SAMPLE_WINDOW_MS) {
sum1 += analogRead(ADC_PIN_1);
sum2 += analogRead(ADC_PIN_2);
samples++;
delayMicroseconds(SAMPLE_DELAY_US);
}
float avg1 = (float)sum1 / samples;
float avg2 = (float)sum2 / samples;
// Convert ADC value to voltage (default analog reference = Vcc ~ 5V)
v1 = avg1 * (5.0f / 1023.0f);
v2 = avg2 * (5.0f / 1023.0f);
}
static void sortFloatArray(float *a, uint16_t n)
{
// Insertion sort (n=100 is small, OK)
for (uint16_t i = 1; i < n; i++) {
float key = a[i];
int16_t j = (int16_t)i - 1;
while (j >= 0 && a[j] > key) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = key;
}
}
static float medianOfSortedFloatArray(const float *a, uint16_t n)
{
if (n == 0) return 0.0f;
if (n & 1) {
return a[n / 2];
} else {
return (a[(n / 2) - 1] + a[n / 2]) * 0.5f;
}
}
// Calibrate baseline + threshold once at boot/reset
// Parameter must be only AverageRepeat (per your requirement).
static void calibrateVdiffThreshold(uint16_t averageRepeat)
{
if (averageRepeat < 1) averageRepeat = 1;
if (averageRepeat > 200) averageRepeat = 200; // RAM safety cap
float diffs[200];
for (uint16_t i = 0; i < averageRepeat; i++) {
measureAveragedVoltages();
diffs[i] = absf(v1 - v2); // baseline mismatch sample
}
sortFloatArray(diffs, averageRepeat);
VdiffBaseline = medianOfSortedFloatArray(diffs, averageRepeat);
// Final threshold with margin + floor
VdiffThreshold = maxf(VdiffBaseline * VdiffThresholdMargin, VdiffThresholdMinVolts);
}
static void updateDirectionFromVoltages()
{
float diff = v1 - v2;
float absDiff = absf(diff);
if (absDiff <= VdiffThreshold) {
direction = 0;
} else {
// Mapping choice:
// v1 lower than v2 -> direction 1 (D2)
// v2 lower than v1 -> direction 2 (D3)
direction = (diff < 0.0f) ? LED_DIR1_PIN : LED_DIR2_PIN;
}
}
static void serialPrintAll()
{
if (!SerialOutputAllow) return;
Serial.print("A2 for PB3 XTAL1, Pin2: ");
Serial.print(v1, 3);
Serial.print(" V | ");
Serial.print("A3 for PB4 XTAL2, Pin3: ");
Serial.print(v2, 3);
Serial.print(" V | ");
Serial.print("|V1-V2|: ");
Serial.print(absf(v1 - v2), 3);
Serial.print(" V | ");
Serial.print("VdiffBaseline: ");
Serial.print(VdiffBaseline, 3);
Serial.print(" V | ");
Serial.print("VdiffThresholdMargin: ");
Serial.print(VdiffThresholdMargin, 2);
Serial.print(" x | ");
Serial.print("VdiffThresholdMinVolts: ");
Serial.print(VdiffThresholdMinVolts, 3);
Serial.print(" V | ");
Serial.print("VdiffThreshold: ");
Serial.print(VdiffThreshold, 3);
Serial.print(" V | ");
Serial.print("direction: ");
Serial.println(direction);
}
void setup() {
Serial.begin(115200);
pinMode(ADC_PIN_1, INPUT);
pinMode(ADC_PIN_2, INPUT);
pinMode(LED_DIR1_PIN, OUTPUT);
pinMode(LED_DIR2_PIN, OUTPUT);
calibrateVdiffThreshold(AverageRepeat);
// One measurement for initial output + outputs
measureAveragedVoltages();
updateDirectionFromVoltages();
applyDirectionOutputs();
if (SerialOutputAllow) {
Serial.println("=== DenshaBekutoru Optocoupler Average Test (Arduino Pro Mini 5V/16MHz) ===");
Serial.print("AverageRepeat: ");
Serial.println(AverageRepeat);
}
serialPrintAll();
}
void loop() {
measureAveragedVoltages();
updateDirectionFromVoltages();
applyDirectionOutputs();
serialPrintAll();
delay(300);
}

View File

@ -0,0 +1,58 @@
/*
0004_DenshaBekutoru ? Optocoupler Averaging Test (UNO)
Measures average voltage on:
- A2 -> later ATtiny85 PB3 (XTAL1, Pin 2)
- A3 -> later ATtiny85 PB4 (XTAL2, Pin 3)
Integration window is configurable via SAMPLE_WINDOW_MS.
by tgohle, last edit 20260111
*/
const unsigned long SAMPLE_WINDOW_MS = 100; // change here
const unsigned long SAMPLE_DELAY_US = 500; // delay between ADC samples
const uint8_t ADC_PIN_1 = A2; // UNO A2 -> later ATtiny85 PB3 (XTAL1, Pin 2)
const uint8_t ADC_PIN_2 = A3; // UNO A3 -> later ATtiny85 PB4 (XTAL2, Pin 3)
void setup() {
Serial.begin(115200);
pinMode(ADC_PIN_1, INPUT);
pinMode(ADC_PIN_2, INPUT);
Serial.println("=== DenshaBekutoru Optocoupler Average Test ===");
}
void loop() {
unsigned long startTime = millis();
unsigned long sum1 = 0;
unsigned long sum2 = 0;
unsigned long samples = 0;
while (millis() - startTime < SAMPLE_WINDOW_MS) {
sum1 += analogRead(ADC_PIN_1);
sum2 += analogRead(ADC_PIN_2);
samples++;
delayMicroseconds(SAMPLE_DELAY_US);
}
float avg1 = (float)sum1 / samples;
float avg2 = (float)sum2 / samples;
float v1 = avg1 * (5.0 / 1023.0);
float v2 = avg2 * (5.0 / 1023.0);
Serial.print("A2 for PB3 XTAL1, Pin2: ");
Serial.print(v1, 3);
Serial.print(" V | ");
Serial.print("A3 for PB4 XTAL2, Pin3: ");
Serial.print(v2, 3);
Serial.println(" V");
delay(300);
}

View File

@ -0,0 +1,292 @@
/*
0004_DenshaBekutoru Version 0.1 Test
Target dev board (later): Arduino Pro Mini 5V / 16 MHz (ATmega328P)
----------------------------------------------------------------------------
State machine (direction memory)
----------------------------------------------------------------------------
Inputs derived from v1, v2, VdiffThreshold:
N (Neutral): |v1 - v2| <= VdiffThreshold
D1 (v1>>v2): (v1 - v2) > VdiffThreshold
D2 (v2>>v1): (v2 - v1) > VdiffThreshold
State encoding:
0 = NONE
2 = DIR1
3 = DIR2
Transition table:
Current \ Input | N (neutral) | D1 (v1>>v2) | D2 (v2>>v1)
-----------------------------------------------------------------
0 (NONE) | 0 | 2 | 3
2 (DIR1) | 2 | 2 | 3
3 (DIR2) | 3 | 2 | 3
Mermaid (documentation)
-----------------------
stateDiagram-v2
[*] --> NONE
state "0 : NONE" as NONE
state "2 : DIR1 (v1>>v2)" as DIR1
state "3 : DIR2 (v2>>v1)" as DIR2
NONE --> NONE : |v1 - v2| <= T
NONE --> DIR1 : v1 - v2 > T
NONE --> DIR2 : v2 - v1 > T
DIR1 --> DIR1 : |v1 - v2| <= T
DIR1 --> DIR1 : v1 - v2 > T
DIR1 --> DIR2 : v2 - v1 > T
DIR2 --> DIR2 : |v1 - v2| <= T
DIR2 --> DIR2 : v2 - v1 > T
DIR2 --> DIR1 : v1 - v2 > T
*/
const unsigned long SAMPLE_WINDOW_MS = 100; // averaging window per measurement
const unsigned long SAMPLE_DELAY_US = 500; // delay between ADC samples (~2 kHz)
const uint8_t ADC_PIN_1 = A2; // Pro Mini A2 -> later ATtiny85 PB3 (XTAL1, Pin 2)
const uint8_t ADC_PIN_2 = A3; // Pro Mini A3 -> later ATtiny85 PB4 (XTAL2, Pin 3)
// Direction LEDs (avoid D0/D1 because you may want RX/TX later)
const uint8_t LED_DIR1_PIN = 2; // D2
const uint8_t LED_DIR2_PIN = 3; // D3
const unsigned int LED_BLINK_ON_MS = 150;
const unsigned int LED_BLINK_OFF_MS = 150;
// Serial output control (0 = no output, 1 = output)
bool SerialOutputAllow = true;
// ---- Calibration parameters ----
const uint16_t AverageRepeat = 100; // number of init measurements
const float VdiffThresholdMargin = 1.50f; // multiplier (e.g., 1.5 = +50% margin)
const float VdiffThresholdMinVolts = 0.03f; // floor in volts
// Globals: latest measured averaged voltages
float v1 = 0.0f;
float v2 = 0.0f;
// Calibration globals
float VdiffBaseline = 0.0f; // median(|V1-V2|) measured at boot (no movement)
float VdiffThreshold = 0.0f; // final threshold used for direction decision
// Direction encoding:
// 0 = NONE, 2 = DIR1, 3 = DIR2
byte direction = 0;
static inline float absf(float x) { return (x >= 0.0f) ? x : -x; }
static inline float maxf(float a, float b) { return (a > b) ? a : b; }
// -----------------------------------------------------------------------------
// LED helpers
// -----------------------------------------------------------------------------
static void blinkLED(uint8_t pin, uint8_t times)
{
for (uint8_t i = 0; i < times; i++) {
digitalWrite(pin, HIGH);
delay(LED_BLINK_ON_MS);
digitalWrite(pin, LOW);
delay(LED_BLINK_OFF_MS);
}
}
static void initBlinkSequence()
{
// LED at Output 2 blinks 2 times
blinkLED(LED_DIR1_PIN, 2);
// LED at Output 3 blinks 3 times
blinkLED(LED_DIR2_PIN, 3);
}
static void applyDirectionOutputs()
{
digitalWrite(LED_DIR1_PIN, LOW);
digitalWrite(LED_DIR2_PIN, LOW);
if (direction == 2) {
digitalWrite(LED_DIR1_PIN, HIGH);
} else if (direction == 3) {
digitalWrite(LED_DIR2_PIN, HIGH);
}
}
// -----------------------------------------------------------------------------
// Measurement
// -----------------------------------------------------------------------------
static void measureAveragedVoltages()
{
unsigned long startTime = millis();
unsigned long sum1 = 0;
unsigned long sum2 = 0;
unsigned long samples = 0;
while (millis() - startTime < SAMPLE_WINDOW_MS) {
sum1 += analogRead(ADC_PIN_1);
sum2 += analogRead(ADC_PIN_2);
samples++;
delayMicroseconds(SAMPLE_DELAY_US);
}
float avg1 = (float)sum1 / samples;
float avg2 = (float)sum2 / samples;
// Convert ADC value to voltage (default analog reference = Vcc ~ 5V)
v1 = avg1 * (5.0f / 1023.0f);
v2 = avg2 * (5.0f / 1023.0f);
}
// -----------------------------------------------------------------------------
// Median helpers (for calibration)
// -----------------------------------------------------------------------------
static void sortFloatArray(float *a, uint16_t n)
{
// Insertion sort (n=100 is small, OK)
for (uint16_t i = 1; i < n; i++) {
float key = a[i];
int16_t j = (int16_t)i - 1;
while (j >= 0 && a[j] > key) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = key;
}
}
static float medianOfSortedFloatArray(const float *a, uint16_t n)
{
if (n == 0) return 0.0f;
if (n & 1) {
return a[n / 2];
} else {
return (a[(n / 2) - 1] + a[n / 2]) * 0.5f;
}
}
// Calibrate baseline + threshold once at boot/reset
// Parameter must be only AverageRepeat.
static void calibrateVdiffThreshold(uint16_t averageRepeat)
{
if (averageRepeat < 1) averageRepeat = 1;
if (averageRepeat > 200) averageRepeat = 200; // RAM safety cap
float diffs[200];
for (uint16_t i = 0; i < averageRepeat; i++) {
measureAveragedVoltages();
diffs[i] = absf(v1 - v2); // baseline mismatch sample
}
sortFloatArray(diffs, averageRepeat);
VdiffBaseline = medianOfSortedFloatArray(diffs, averageRepeat);
// Final threshold with margin + floor
VdiffThreshold = maxf(VdiffBaseline * VdiffThresholdMargin, VdiffThresholdMinVolts);
}
// -----------------------------------------------------------------------------
// State machine
// -----------------------------------------------------------------------------
static void updateDirectionFromVoltages()
{
const float diff = v1 - v2;
const float absDiff = absf(diff);
// Neutral region: hold direction
if (absDiff <= VdiffThreshold) {
return;
}
// Clear dominance: set direction deterministically
// diff > 0 => v1 >> v2 => DIR1 (2)
// diff < 0 => v2 >> v1 => DIR2 (3)
direction = (diff > 0.0f) ? (byte)2 : (byte)3;
}
// -----------------------------------------------------------------------------
// Serial output
// -----------------------------------------------------------------------------
static void serialPrintAll()
{
if (!SerialOutputAllow) return;
Serial.print("A2 for PB3 XTAL1, Pin2: ");
Serial.print(v1, 3);
Serial.print(" V | ");
Serial.print("A3 for PB4 XTAL2, Pin3: ");
Serial.print(v2, 3);
Serial.print(" V | ");
Serial.print("|V1-V2|: ");
Serial.print(absf(v1 - v2), 3);
Serial.print(" V | ");
Serial.print("VdiffBaseline: ");
Serial.print(VdiffBaseline, 3);
Serial.print(" V | ");
Serial.print("VdiffThresholdMargin: ");
Serial.print(VdiffThresholdMargin, 2);
Serial.print(" x | ");
Serial.print("VdiffThresholdMinVolts: ");
Serial.print(VdiffThresholdMinVolts, 3);
Serial.print(" V | ");
Serial.print("VdiffThreshold: ");
Serial.print(VdiffThreshold, 3);
Serial.print(" V | ");
Serial.print("direction: ");
Serial.println(direction);
}
// -----------------------------------------------------------------------------
// Arduino entry points
// -----------------------------------------------------------------------------
void setup() {
Serial.begin(115200);
pinMode(ADC_PIN_1, INPUT);
pinMode(ADC_PIN_2, INPUT);
pinMode(LED_DIR1_PIN, OUTPUT);
pinMode(LED_DIR2_PIN, OUTPUT);
// Initial calibration (assumes no movement)
calibrateVdiffThreshold(AverageRepeat);
// Init blink sequence: 2x on D2, 3x on D3
initBlinkSequence();
// One measurement for initial display + initial direction
measureAveragedVoltages();
updateDirectionFromVoltages();
applyDirectionOutputs();
if (SerialOutputAllow) {
Serial.println("=== DenshaBekutoru 0004 Version 0.1 Test (Arduino Uno Test) ===");
Serial.println(" ~~~ InitStart ~~~");
Serial.print(" AverageRepeat: ");
Serial.println(AverageRepeat);
Serial.println(" ~~~ InitEnd ~~~");
}
serialPrintAll();
}
void loop() {
measureAveragedVoltages();
updateDirectionFromVoltages();
applyDirectionOutputs();
serialPrintAll();
delay(300);
}

View File

@ -0,0 +1,286 @@
/*
0004_DenshaBekutoru Optocoupler Averaging Test
Target dev board (later): Arduino Pro Mini 5V / 16 MHz (ATmega328P)
----------------------------------------------------------------------------
State machine (direction memory) + Hysteresis (Version A)
----------------------------------------------------------------------------
We use two thresholds:
T_hold (smaller): below -> treat as neutral and HOLD state
T_enter (larger): above -> allow direction change (set by sign)
Behavior:
If |diff| <= T_hold : hold direction
If |diff| >= T_enter: set direction by sign
Else (between) : hold direction
Presets (implemented as multipliers of the calibrated VdiffThreshold):
T_hold = 1.0 * VdiffThreshold
T_enter = 2.0 * VdiffThreshold
Inputs derived from v1, v2:
diff = v1 - v2
*/
const unsigned long SAMPLE_WINDOW_MS = 100; // averaging window per measurement
const unsigned long SAMPLE_DELAY_US = 500; // delay between ADC samples (~2 kHz)
const uint8_t ADC_PIN_1 = A2; // Pro Mini A2 -> later ATtiny85 PB3 (XTAL1, Pin 2)
const uint8_t ADC_PIN_2 = A3; // Pro Mini A3 -> later ATtiny85 PB4 (XTAL2, Pin 3)
// Direction LEDs (avoid D0/D1 because you may want RX/TX later)
const uint8_t LED_DIR1_PIN = 2; // D2
const uint8_t LED_DIR2_PIN = 3; // D3
const unsigned int LED_BLINK_ON_MS = 150;
const unsigned int LED_BLINK_OFF_MS = 150;
// Serial output control (0 = no output, 1 = output)
bool SerialOutputAllow = true;
// ---- Calibration parameters ----
const uint16_t AverageRepeat = 100; // number of init measurements
const float VdiffThresholdMargin = 1.50f; // multiplier (e.g., 1.5 = +50% margin)
const float VdiffThresholdMinVolts = 0.03f; // floor in volts
// ---- Hysteresis presets (multipliers of VdiffThreshold) ----
const float THOLD_MULT = 1.0f; // T_hold = THOLD_MULT * VdiffThreshold
const float TENTER_MULT = 2.0f; // T_enter = TENTER_MULT * VdiffThreshold
// Globals: latest measured averaged voltages
float v1 = 0.0f;
float v2 = 0.0f;
// Calibration globals
float VdiffBaseline = 0.0f; // median(|V1-V2|) measured at boot (no movement)
float VdiffThreshold = 0.0f; // calibrated base threshold (used to derive T_hold/T_enter)
// Hysteresis thresholds (derived once after calibration)
float T_hold = 0.0f;
float T_enter = 0.0f;
// Direction encoding:
// 0 = NONE, 2 = DIR1, 3 = DIR2
byte direction = 0;
static inline float absf(float x) { return (x >= 0.0f) ? x : -x; }
static inline float maxf(float a, float b) { return (a > b) ? a : b; }
// -----------------------------------------------------------------------------
// LED helpers
// -----------------------------------------------------------------------------
static void blinkLED(uint8_t pin, uint8_t times)
{
for (uint8_t i = 0; i < times; i++) {
digitalWrite(pin, HIGH);
delay(LED_BLINK_ON_MS);
digitalWrite(pin, LOW);
delay(LED_BLINK_OFF_MS);
}
}
static void initBlinkSequence()
{
// LED at Output 2 blinks 2 times
blinkLED(LED_DIR1_PIN, 2);
// LED at Output 3 blinks 3 times
blinkLED(LED_DIR2_PIN, 3);
}
static void applyDirectionOutputs()
{
digitalWrite(LED_DIR1_PIN, LOW);
digitalWrite(LED_DIR2_PIN, LOW);
if (direction == 2) {
digitalWrite(LED_DIR1_PIN, HIGH);
} else if (direction == 3) {
digitalWrite(LED_DIR2_PIN, HIGH);
}
}
// -----------------------------------------------------------------------------
// Measurement
// -----------------------------------------------------------------------------
static void measureAveragedVoltages()
{
unsigned long startTime = millis();
unsigned long sum1 = 0;
unsigned long sum2 = 0;
unsigned long samples = 0;
while (millis() - startTime < SAMPLE_WINDOW_MS) {
sum1 += analogRead(ADC_PIN_1);
sum2 += analogRead(ADC_PIN_2);
samples++;
delayMicroseconds(SAMPLE_DELAY_US);
}
float avg1 = (float)sum1 / samples;
float avg2 = (float)sum2 / samples;
// Convert ADC value to voltage (default analog reference = Vcc ~ 5V)
v1 = avg1 * (5.0f / 1023.0f);
v2 = avg2 * (5.0f / 1023.0f);
}
// -----------------------------------------------------------------------------
// Median helpers (for calibration)
// -----------------------------------------------------------------------------
static void sortFloatArray(float *a, uint16_t n)
{
// Insertion sort (n=100 is small, OK)
for (uint16_t i = 1; i < n; i++) {
float key = a[i];
int16_t j = (int16_t)i - 1;
while (j >= 0 && a[j] > key) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = key;
}
}
static float medianOfSortedFloatArray(const float *a, uint16_t n)
{
if (n == 0) return 0.0f;
if (n & 1) {
return a[n / 2];
} else {
return (a[(n / 2) - 1] + a[n / 2]) * 0.5f;
}
}
// Calibrate baseline + VdiffThreshold once at boot/reset
static void calibrateVdiffThreshold(uint16_t averageRepeat)
{
if (averageRepeat < 1) averageRepeat = 1;
if (averageRepeat > 200) averageRepeat = 200; // RAM safety cap
float diffs[200];
for (uint16_t i = 0; i < averageRepeat; i++) {
measureAveragedVoltages();
diffs[i] = absf(v1 - v2); // baseline mismatch sample
}
sortFloatArray(diffs, averageRepeat);
VdiffBaseline = medianOfSortedFloatArray(diffs, averageRepeat);
// Calibrated base threshold with margin + floor
VdiffThreshold = maxf(VdiffBaseline * VdiffThresholdMargin, VdiffThresholdMinVolts);
// Derive hysteresis thresholds (Version A)
T_hold = THOLD_MULT * VdiffThreshold;
T_enter = TENTER_MULT * VdiffThreshold;
}
// -----------------------------------------------------------------------------
// State machine with hysteresis (Version A)
// -----------------------------------------------------------------------------
static void updateDirectionFromVoltages()
{
const float diff = v1 - v2;
const float absDiff = absf(diff);
// 1) Neutral region: HOLD
if (absDiff <= T_hold) {
return;
}
// 2) Strong region: allow direction change
if (absDiff >= T_enter) {
direction = (diff > 0.0f) ? (byte)2 : (byte)3;
return;
}
// 3) Deadband between T_hold and T_enter: HOLD
return;
}
// -----------------------------------------------------------------------------
// Serial output
// -----------------------------------------------------------------------------
static void serialPrintAll()
{
if (!SerialOutputAllow) return;
Serial.print("A2 for PB3 XTAL1, Pin2: ");
Serial.print(v1, 3);
Serial.print(" V | ");
Serial.print("A3 for PB4 XTAL2, Pin3: ");
Serial.print(v2, 3);
Serial.print(" V | ");
Serial.print("|V1-V2|: ");
Serial.print(absf(v1 - v2), 3);
Serial.print(" V | ");
Serial.print("VdiffBaseline: ");
Serial.print(VdiffBaseline, 3);
Serial.print(" V | ");
Serial.print("VdiffThreshold: ");
Serial.print(VdiffThreshold, 3);
Serial.print(" V | ");
Serial.print("T_hold: ");
Serial.print(T_hold, 3);
Serial.print(" V | ");
Serial.print("T_enter: ");
Serial.print(T_enter, 3);
Serial.print(" V | ");
Serial.print("direction: ");
Serial.println(direction);
}
// -----------------------------------------------------------------------------
// Arduino entry points
// -----------------------------------------------------------------------------
void setup() {
Serial.begin(115200);
pinMode(ADC_PIN_1, INPUT);
pinMode(ADC_PIN_2, INPUT);
pinMode(LED_DIR1_PIN, OUTPUT);
pinMode(LED_DIR2_PIN, OUTPUT);
// Initial calibration (assumes no movement)
calibrateVdiffThreshold(AverageRepeat);
// Init blink sequence: 2x on D2, 3x on D3
initBlinkSequence();
// One measurement for initial display + initial direction
measureAveragedVoltages();
updateDirectionFromVoltages();
applyDirectionOutputs();
if (SerialOutputAllow) {
Serial.println("=== DenshaBekutoru Optocoupler Average Test (Arduino Pro Mini 5V/16MHz) ===");
Serial.print("AverageRepeat: ");
Serial.println(AverageRepeat);
Serial.print("THOLD_MULT: ");
Serial.print(THOLD_MULT, 2);
Serial.print(" TENTER_MULT: ");
Serial.println(TENTER_MULT, 2);
}
serialPrintAll();
}
void loop() {
measureAveragedVoltages();
updateDirectionFromVoltages();
applyDirectionOutputs();
serialPrintAll();
delay(300);
}

View File

@ -0,0 +1,231 @@
/*
0004_DenshaBekutoru State Machine implemented
Target dev board (later): Arduino Pro Mini 5V / 16 MHz (ATmega328P)
----------------------------------------------------------------------------
State machine (direction memory)
----------------------------------------------------------------------------
Inputs derived from v1, v2, VdiffThreshold:
N (Neutral): |v1 - v2| <= VdiffThreshold
D1 (v1>>v2): (v1 - v2) > VdiffThreshold
D2 (v2>>v1): (v2 - v1) > VdiffThreshold
State encoding (kept transfer-friendly, and compatible with earlier pin-mapping):
0 = NONE
2 = DIR1
3 = DIR2
Transition table:
Current \ Input | N (neutral) | D1 (v1>>v2) | D2 (v2>>v1)
-----------------------------------------------------------------
0 (NONE) | 0 | 2 | 3
2 (DIR1) | 2 | 2 | 3
3 (DIR2) | 3 | 2 | 3
Mermaid (documentation)
-----------------------
stateDiagram-v2
[*] --> NONE
state "0 : NONE" as NONE
state "2 : DIR1 (v1>>v2)" as DIR1
state "3 : DIR2 (v2>>v1)" as DIR2
NONE --> NONE : |v1 - v2| <= T
NONE --> DIR1 : v1 - v2 > T
NONE --> DIR2 : v2 - v1 > T
DIR1 --> DIR1 : |v1 - v2| <= T
DIR1 --> DIR1 : v1 - v2 > T
DIR1 --> DIR2 : v2 - v1 > T
DIR2 --> DIR2 : |v1 - v2| <= T
DIR2 --> DIR2 : v2 - v1 > T
DIR2 --> DIR1 : v1 - v2 > T
*/
const unsigned long SAMPLE_WINDOW_MS = 100; // averaging window per measurement
const unsigned long SAMPLE_DELAY_US = 500; // delay between ADC samples (~2 kHz)
const uint8_t ADC_PIN_1 = A2; // Pro Mini A2 -> later ATtiny85 PB3 (XTAL1, Pin 2)
const uint8_t ADC_PIN_2 = A3; // Pro Mini A3 -> later ATtiny85 PB4 (XTAL2, Pin 3)
// Serial output control (0 = no output, 1 = output)
bool SerialOutputAllow = true;
// ---- Calibration parameters ----
const uint16_t AverageRepeat = 100; // number of init measurements
const float VdiffThresholdMargin = 1.50f; // multiplier (e.g., 1.5 = +50% margin)
const float VdiffThresholdMinVolts = 0.03f; // floor in volts (optional but practical)
// Globals: latest measured averaged voltages
float v1 = 0.0f;
float v2 = 0.0f;
// Calibration globals
float VdiffBaseline = 0.0f; // median(|V1-V2|) measured at boot (no movement)
float VdiffThreshold = 0.0f; // final threshold used for direction decision
// Direction encoding:
// 0 = NONE, 2 = DIR1, 3 = DIR2
byte direction = 0;
static inline float absf(float x) { return (x >= 0.0f) ? x : -x; }
static inline float maxf(float a, float b) { return (a > b) ? a : b; }
// Measure averaged voltages (updates globals v1/v2)
static void measureAveragedVoltages()
{
unsigned long startTime = millis();
unsigned long sum1 = 0;
unsigned long sum2 = 0;
unsigned long samples = 0;
while (millis() - startTime < SAMPLE_WINDOW_MS) {
sum1 += analogRead(ADC_PIN_1);
sum2 += analogRead(ADC_PIN_2);
samples++;
delayMicroseconds(SAMPLE_DELAY_US);
}
float avg1 = (float)sum1 / samples;
float avg2 = (float)sum2 / samples;
// Convert ADC value to voltage (default analog reference = Vcc ~ 5V)
v1 = avg1 * (5.0f / 1023.0f);
v2 = avg2 * (5.0f / 1023.0f);
}
static void sortFloatArray(float *a, uint16_t n)
{
// Insertion sort (n=100 is small, OK)
for (uint16_t i = 1; i < n; i++) {
float key = a[i];
int16_t j = (int16_t)i - 1;
while (j >= 0 && a[j] > key) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = key;
}
}
static float medianOfSortedFloatArray(const float *a, uint16_t n)
{
if (n == 0) return 0.0f;
if (n & 1) {
return a[n / 2];
} else {
return (a[(n / 2) - 1] + a[n / 2]) * 0.5f;
}
}
// Calibrate baseline + threshold once at boot/reset
// Parameter must be only AverageRepeat (per your requirement).
static void calibrateVdiffThreshold(uint16_t averageRepeat)
{
if (averageRepeat < 1) averageRepeat = 1;
if (averageRepeat > 200) averageRepeat = 200; // RAM safety cap
float diffs[200];
for (uint16_t i = 0; i < averageRepeat; i++) {
measureAveragedVoltages();
diffs[i] = absf(v1 - v2); // baseline mismatch sample
}
sortFloatArray(diffs, averageRepeat);
VdiffBaseline = medianOfSortedFloatArray(diffs, averageRepeat);
// Final threshold with margin + floor
VdiffThreshold = maxf(VdiffBaseline * VdiffThresholdMargin, VdiffThresholdMinVolts);
}
// Implements the state machine table above
static void updateDirectionFromVoltages()
{
const float diff = v1 - v2;
const float absDiff = absf(diff);
// Neutral region: hold direction (only NONE stays NONE)
if (absDiff <= VdiffThreshold) {
// direction remains unchanged (0 stays 0; 2 stays 2; 3 stays 3)
return;
}
// Clear dominance: set direction deterministically
// diff > 0 => v1 >> v2 => DIR1 (2)
// diff < 0 => v2 >> v1 => DIR2 (3)
direction = (diff > 0.0f) ? (byte)2 : (byte)3;
}
static void serialPrintAll()
{
if (!SerialOutputAllow) return;
Serial.print("A2 for PB3 XTAL1, Pin2: ");
Serial.print(v1, 3);
Serial.print(" V | ");
Serial.print("A3 for PB4 XTAL2, Pin3: ");
Serial.print(v2, 3);
Serial.print(" V | ");
Serial.print("|V1-V2|: ");
Serial.print(absf(v1 - v2), 3);
Serial.print(" V | ");
Serial.print("VdiffBaseline: ");
Serial.print(VdiffBaseline, 3);
Serial.print(" V | ");
Serial.print("VdiffThresholdMargin: ");
Serial.print(VdiffThresholdMargin, 2);
Serial.print(" x | ");
Serial.print("VdiffThresholdMinVolts: ");
Serial.print(VdiffThresholdMinVolts, 3);
Serial.print(" V | ");
Serial.print("VdiffThreshold: ");
Serial.print(VdiffThreshold, 3);
Serial.print(" V | ");
Serial.print("direction: ");
Serial.println(direction);
}
void setup() {
Serial.begin(115200);
pinMode(ADC_PIN_1, INPUT);
pinMode(ADC_PIN_2, INPUT);
// Initial calibration: compute VdiffThreshold once after boot/reset
calibrateVdiffThreshold(AverageRepeat);
// One measurement for initial display
measureAveragedVoltages();
updateDirectionFromVoltages();
if (SerialOutputAllow) {
Serial.println("=== DenshaBekutoru State Machine and Variable Output (Arduino Pro Mini 5V/16MHz) ===");
Serial.println("~~~ Init ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
Serial.print("AverageRepeat: ");
Serial.println(AverageRepeat);
Serial.println("~~~ Init ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
}
serialPrintAll();
}
void loop() {
measureAveragedVoltages();
updateDirectionFromVoltages();
serialPrintAll();
delay(300);
}